

Final Oral Examination: IoT Data Discovery and Learning

Ph.D. Candidate: Trung Hieu Tran Department of Computer Science, University of Texas at Dallas Ph.D. Committee:
Dr. I-Ling Yen (Supervisor)
Dr. Farokh Bastani (Co-Supervisor)
Dr. Latifur Khan
Dr. Weili Wu
Dr. Kyeongjae Cho (Chair of the Examining Committee)

Presentation Outline

- Introduction (Recap)
- Objective (Recap)
- Our Approach
 - IoT Data Discovery (Recap)
 - IoT Data Learning
 - Literature Review
 - Methodology
 - Experimental Studies
- Conclusion and Future Research

IoT Database Network (IoT-DBN)

Data volume of IoT connections worldwide in 2019 and 2025 (in zettabytes*) [statista,2022] * 1 Zettabytes = 10¹² Gigabytes

- Growing ubiquity of IoT devices (~ 16 Billion devices in 2025)
- Creating a torrent of IoT data

Motivating Example

Objective

- Make use of the huge amount of data (from IoT sensors) to help improve the daily social operations
- Address existing issues:
 - How to discover the useful data for the current situation?
 - How to learn from the discovered data to make problem solving decisions?
 - How to address to data-sparsity in learning?

Overview of Our Approach

Overview of Our Approach

IoT Database Network

- IoT data are collected in a peer-to-peer manner by sensors on the edge of the Internet
- These data are likely being stored at the edge of the Internet
- Data discovery is to discover the relevant data streams via their descriptions.

Multi-Attribute Annotation Models (MAA)

- MAA for the metadata of each datasteam
 - Has been considered widely for data stream annotation. [G.-E. Luis, 2004]
 - $ds = ((a_1: v_1^{ds}), (a_2: v_2^{ds}), \dots, (a_n: v_n^{ds}))$
 - $(a_i: v_i^{ds})$: one descriptor with attribute a_i and value v_i^{ds}
 - Example:

(DataCategory: GPS; Vehicle type: car; City:Cincinnati, → descriptor Region: Central Business District; Day: Weekend; Region traffic volume: v; Duration: 3/2/18 17:03:20 - 3/2/18 19:10:30)

- Query in MAA
 - Subset of attributes
 - **Example** (DataCategory: *GPS*; Vehicle type: *ambulance* || car; Region traffic volume: $[v_1, v_2]$)

Data Discovery Routing in IoT-DBN

• Routing table (RT)

• Each node builds a routing table to facilitate data discovery

Advertisement

- Data source sends out data descriptors => Relevant nodes add them in their RTs
- A data discovery query
 - Forwarded toward where the data is at based on RTs
 - With the help of RT information
- Like advanced ICN (information centric network)

Overview of Existing Works for Data Discovery

Overview of Existing Works for Data Discovery

Overview of Existing Works for Data Discovery

Goal: to address the space concerns in the resource-constrained network

- Alphabetical based policy (SP_{alph})
- Hash based policy (SP_{hash})
- Meaning based policy (*SP_{meaning}*)

SP_{alph}

- Most similar to IP summarization
- Example
 - Monitor:engine
 - Monitor:engine-speed
 - ...
 - ⇒ In RTs: Only maintain **monitor:engine**

SP_{hash}

- Address the space overhead in SP_{alph}
- Hash the keywords and use the hash values as the code
- Naturally summarizes by controlling the hash code length

• IoT data streams from a

specific system, or a specific

environment may have

attributed keywords that are

semantically similar

SP_{meaning}

1. *Word2Vec(keywords)* into embedded space

SP_{meaning}

• Monitor sensors = {crank-pos; CO; engine-speed; MAP; throttle-pos; O₂;

When to summarize

(v¹, v², v³, v⁴) – keyword set, corresponding to: (10000, 10001,10010,10011)- Full sibling code set (FSCS)

- If a RT has 4 codes in FSCS, they will be summarized into 101
- If it has only 3 codes, what happens if we still summarize?=> misleading
- \Rightarrow Need to know the FSCS before summarizing

When to summarize

- How to get FSCS size?
 - Average FSCS Size Estimation
 - Learn the estimation function from dictionary of Wordnet (155K keywords)
 - Derivative from tree configuration
 - FSCS Size Vector
 - Maintain the accurate FSCS size from root to current node in sum-tree: Sibling

Routing table design for Summarization Tree

hybrid-TableTrie (hTT)

- Master table
- RT-Trie

Other data structures?

- Binary search tree
- N-ary search tree

Routing table design for Summarization Tree

hybrid-TableTrie (hTT)

- Master table
 - The master table is a full index table
 - Each index the first *b* bits of tree code.
- RT-Trie

Routing table design for Summarization Tree

hybrid-TableTrie (hTT)

- Master table
- RT-Trie
 - Each node maintains code, neighbors, and sibling count vector

Handling IoT network growth

Growing rate ~ 11% per year

- new data streams => new codes for new descriptors
- When the number of new descriptors increases extensively,
 a lot of collisions => misleading routings due to summarization coding
- \Rightarrow Need to increase code length
- \Rightarrow Need a distributed solution for reestablishment

Handling IoT network growth

Reestablishment process:

- 1. Supper peer sends a request to super-peer leader
- 2. The leader will trigger the reestablishment process and send the request to all super-peers
- 3. Update config for a larger code
- 4. All data streams will **re-advertise** their descriptors

Conditions to trigger reestablishment:

- #new descriptors > threshold
- #unique keyword/ hash size > threshold
- the intra-cluster distance > threshold (ST_{meaning})

Experimental Study: Compare Data Discovery Approaches

- Reduces the RT size by 20 to 30 folds with 2-5% increase in latency
- Outperforms DHT based approaches by **2** to **6** folds in terms of latency, traffic.

Overview of Our Approach

Motivating Example

IoT Data Learning-Recap

Which ambulance to order???

Problems to address:

- How to estimate the arrival time of ambulances at different locations efficiently?
- If the desired data is not available or not sufficient for learning:
 - Can we use transfer learning to learn the data from other data-rich resource?

Improve accuracy, but bad performance for long road segment

Partition a trajectory into several segments and obtain different representations for each segment by some embedding methods for various learning models

[E. Jenelius, et al., 2013]
[Y. Wang, et al., 2014]
[F. Zhang, et al., 2016]
[K.Fu, et al., 2020]
[Y. Sun, et al., 2021]

Focus on a fine-grained datadriven approach that constructs models to learn spatial-temporal knowledge from small regions of the map where the route passes through

[B. Y. Lin, et al.,2018]
[H. Zhang, et al.,2018]
[C. Zhang, et al., 2019]
[Y. Shen, et al.,2020]

Only consider the impact of individual environmental factors without considering the integrated impact.

Different Driving Time Among Vehicle Types

- In the same trajectory, different type of vehicles lead to different driving time
- But none of the existing approach considers this issue
Challenges

- Using one ETA prediction model for all vehicles
 ⇒ Low prediction accuracy
- Building models for each specific vehicle type (not each vehicle)
 ⇒ Potential data scarceness problem
 - \Rightarrow Data for some special vehicles may not even be available

TLETA-Deep Transfer Learning and Integrated Cellular Knowledge for Estimated Time of Arrival Prediction

TLETA-Deep Transfer Learning and Integrated Cellular Knowledge for Estimated Time of Arrival Prediction

- The cellular spatial-temporal knowledge: domain-specific and crossdomain knowledge
- The cellular learning module learns the cellular traffic patterns and includes a classifier, a road network structure embedding scheme, and a cellular ETA algorithm.
- The task-oriented prediction module leverages the learned model to predict ETA of a given trajectory

Cellular spatial-temporal knowledge

• Partition a city into grid cells

Cellular spatial-temporal knowledge

- Partition a city into grid cells
- Construct spatial-temporal knowledge (3D)

• For each cell

Cellular spatial-temporal knowledge

- Partition a city into grid cells
- Construct spatial-temporal knowledge (3D)

$$\mathfrak{I}_{event,t} = \begin{bmatrix} r_{event,t}^{1,1} & r_{event,t}^{1,2} & \cdots & r_{event,t}^{1,\mathcal{J}} \\ r_{event,t}^{2,1} & r_{event,t}^{2,2} & \cdots & r_{event,t}^{2,\mathcal{J}} \\ \vdots & \vdots & \ddots & \vdots \\ r_{event,t}^{\mathcal{I},1} & r_{event,t}^{\mathcal{I},2} & \cdots & r_{event,t}^{\mathcal{I},\mathcal{J}} \end{bmatrix} \qquad \mathfrak{I}_{GPS,t} = \begin{bmatrix} r_{GPS,t}^{1,1} & r_{GPS,t}^{1,2} & \cdots & r_{GPS,t}^{1,\mathcal{J}} \\ r_{GPS,t}^{2,1} & r_{GPS,t}^{2,2} & \cdots & r_{GPS,t}^{2,\mathcal{J}} \\ \vdots & \vdots & \ddots & \vdots \\ r_{GPS,t}^{\mathcal{I},1} & r_{GPS,t}^{\mathcal{I},2} & \cdots & r_{GPS,t}^{\mathcal{I},\mathcal{J}} \end{bmatrix}$$

Cellular spatial-temporal knowledge

- Partition a city into grid cells
- Construct spatial-temporal knowledge (3D)
 - For each cell

Handling Data Sparseness in ETA

Collaborative filtering

[S. Wang, et al., 2017]

 Computationally expensive for spatial-temporal knowledge

Handling Data data sparsity in ETA

Training intensity modification

[Y. Sun, et al., 2020]

Irregular convolution

[B. Du, et al., 2019]

Handling Data Sparseness in ETA

Collaborative filtering

[S. Wang, et al., 2017]

Handling Data data sparsity in ETA

Training intensity modification

[Y. Sun, et al., 2020]

Irregular convolution

[B. Du, et al., 2019]

- Increase the training intensity of datasparse cells under the guidance of data-rich cells
- Computationally expensive for spatialtemporal knowledge as needed to address from which cells for guidance

Handling Data Sparseness in ETA

Collaborative filtering[S. Wang, et al., 2017]Handling
Data data
sparsity in
ETATraining intensity
modification[Y. Sun, et al., 2020]

Regular kernel in CNN

Irregular kernel (proposed)

Irregular convolution

[B. Du, et al., 2019]

 If the nearest neighbor cells are too far, cells may have different traffic properties

Inner-domain data interpolation learning

TLETA- Cellular Learning Model

 Classify cellular grids into *N* different categories of traffic levels based on driving pattern (average speed and other cellular knowledge) via neural network classification

TLETA- Cellular Learning Model

 ${\mathcal N}$ categories

TLETA-SDNE

- Convert each GPS trajectory to list of cells to build road network
- Construct embedding road network via firstorder proximity

Multiple

trajectories

One trajectory

TLETA-SDNE

SNDE for each cell in spatial-temporal knowledge

TLETA-Cellular driving time estimation model

TLETA-Task-oriented Algorithm

Task-oriented algorithm

- Given GPS trajectory
- Using the cellular learning output for cellular ETA
- Update ETA in real-time

TLETA-Transferable Layers

- Transfer Learning among vehicle domains
- Transferable hidden layers fixed while training target domain
- Only train SoftMax layer and Domain customized layers in target domain

TLETA-Transferable Layers

- Transfer Learning among vehicle domains
- Transferable hidden layers fixed while training target domain
- Only train SoftMax Reduce training time significantly
 Domain customized layers in target
 domain

Summary of TLETA

- The cellular spatial-temporal knowledge: domain-specific and cross-domain knowledge
- The cellular learning module learns the cellular traffic patterns and includes a classifier, a road network structure embedding scheme, and a cellular ETA algorithm.
- The task-oriented prediction module leverages the learned model to predict ETA of a given trajectory

Unavailable data for target domain

Unavailable data for target domain

In-region mapping function learning for each region

In-region mapping function learning in region reg

Inter-region transfer learning

Region spatial-temporal similarity

Different ETA Approach Comparison

Approach	Cotogony	Consider Impact Factors							Handle data sparsity			Consider different
Αμμισατιί	Category	GPS	Weather	Event	POI	Time	Local road network structure	Global road network structure	Sparse	TL	Unavailable	vehicle types
[WC. Lee, et al., 2012]	Segment	х										
[S. Maiti, et al., 2014]	End-to-End	х										
[Z. Wang, et al.,2018]	End-to-End	х										
[H. Wang ,et al.,2019]	End-to-End	х					x					
[A. Hofleitner, et al., 2012]	Segment	х					Х		х			
[E. Jenelius, et al., 2013]	Segment	х	х			х	X					
[Y. Wang, et al., 2014]	Segment	х					х		х			
[F. Zhang, et al.,2016]	Segment	х	х						х			
[K.Fu, et al., 2020]	Segment	х	х			х	х		х			
[Y. Sun, et al.,2021]	Segment	х							х	х		
[B. Y. Lin, et al.,2018]	Segment	х			х	х			х	х		
[P. Krishnakumari, et al.,2018]	Fine-grained	х					х		х	х		
[H. Zhang, et al.,2018]	Fine-grained	х										
[C. Zhang, et al., 2019]	Fine-grained	х		х	х		Х		х	х		
[Y. Shen, et al.,2020]	Fine-grained	х				х	х	х				
[S. Wang,et al.,2017]	Segment	х	х	х	х	х	х		х			
[Y. Sun, et al.,2020]	Segment	х							х	х		
[B. Du, et al., 2019]	Fine-grained	х	х	х					х			
[L. Wang, et al., 2019]	Fine-grained	х	х			х			х	х		
[S. Elmi , et al., 2020]	Segment	х	х			х	х		х	х		
[Y. Huang, et al., 2021]	Segment	х					х		х	х		
[T. Mallick, et al.,2021]	Segment	х					х		х	х		
[J. Wang, et al., 2016]	Segment	х				х	х		х	х		
TLETA	Fine-grained	X	X	X	x	X	X	X	Х	Х	X	X

Experimental studies of parameter analysis for TLETA

Experimental studies of parameter analysis for TLETA

Experimental studies for Inter-region transfer

Experimental studies for Inter-region transfer

Experimental studies for ETA prediction

G – GPS knowledge
S – Static
W – Weather
E – Event
R – Road Network
Structure

MAPE - Mean absolute percentage error RMSE - Root Mean Square Error

Approach		I	Knowle	Metrics			
Арргоасн	G	S	W	E	R	MAPE	RMSE
[Y. Shen, et al.,2020]	Х				X	19.57%	76s
[B. Du, et al., 2019]	Х		Х	Х		18.44%	74s
[K.Fu, et al., 2020]	Х		Х		Х	17.92%	71s
[H. Wang ,et al.,2019]	Х					25.32%	102s
	Х					23.78%	86s
	Х	Х				19.64%	72s
	Х		Х			21.44%	81s
	Х			х		20.85%	80s
	Х				X	18.23%	70s
Reduced knowledge	Х		Х	Х		18.20%	70s
categories	Х		Х		Х	16.88%	66s
	Х		Х	х	х	14.35%	58s
	Х	х		х	Х	13.66%	53s
	Х	х	Х		Х	14.02%	56s
	Х	Х	Х	Х		15.71%	62s
	Х	X	X	Х	X	12.37%	36s

Experimental studies for ETA prediction

G – GPS knowledge
S – Static
W – Weather
E – Event
R – Road Network
Structure

MAPE - Mean absolute percentage error RMSE - Root Mean Square Error

	V					23.78%	
Improved at	امعد	+ 1 3	3% (1) and	19.64%	
inipioved at	icas				jana	21.44%	
6% (RMSE)	with	the	same	2		20.85%	
	- f	ГТЛ		:		18.23%	
^{configuration}	n tor	EIA	pred	iction		18.20%	
categories	Х		Х		Х	16.88%	

Experimental studies for TL performance

Cincinnati datasets in 2018

information statistics

Proportios	Dataset			
Flopentes	Urban	Suburban		
#GPS points for regular vehicles	1.2M	1M		
#GPS points for service vehicles	1M	175K		
POI	16K	8K		
Splitting factor ϵ°	0.001°	0.001°		

Transfer learning performance comparison of TLETA and other traffic forecasting methods

Dataset	Urban			Suburban			
Approach	MAPE	RMSE	Time	MAPE	RMSE	Time	
STCNet [C. Zhang, et al., 2019]	17.65%	62s	104m	18.01%	76s	91m	
RegionTrans [L. Wang, et al. 2019]	' 16.23%	56s	110m	17.88%	67s	93m	
TL-DCRNN [T. Mallick, et al.,2021]	16.98%	57s	72m	17.21%	65s	56m	
Lin et al. [B. Y. Lin, et al.,2018	3] 22.58%	73s	53m	24.32%	97s	45m	
FBTL [S. Elmi , et al., 2020]	23.29%	81s	122m	25.78%	105s	99m	
TEEPEE[Y. Huang, et al., 2022	.] 20.96%	70s	88m	22.43%	85s	72m	
Non-transfer	14.78%	55s	49m	18.51%	74s	39m	
TLETA	10.54%	34s	31m	11.81%	38s	29m	

Experimental studies for TL performance

Cincinnati datasets in 2018

information statistics

Transfer learning performance comparison of TLETA and other traffic forecasting methods

Dataset			
	Suburban		
	1M		
	175K		
	8K		
	0.001°		

Dataset		Suburban				
improved at leas	МАРЕ					
39% (RMSE) an	18.01%					
compared to the	e state-o	f-the-ar	t 110m	17.88%		
approaches				17.21%		
Lin et al. [B. Y. Lin, et al.,2018	3] 22.58%	73s	53m	24.32%		

Summary

Future Research

- Considering provenance-based data discovery
- Focus on adapting the applications of our learning techniques to address different questions in ITS and other applicable areas.

Selected Publications

- Tran, Hieu, Son Nguyen, I-Ling Yen, and Farokh Bastani. "Into Summarization Techniques for IoT Data Discovery Routing." 2021 IEEE 14th International Conference on Cloud Computing (CLOUD). IEEE, 2021.
- Tran, Hieu, Son Nguyen, I. Yen, and Farokh Bastani. "IoT Data Discovery: Routing Table and Summarization Techniques." *arXiv preprint arXiv:2203.10791* (2022).
- Tran, Hieu, Son Nguyen, I. Yen, and Farokh Bastani. TLETA: Deep Transfer Learning and Integrated Cellular Knowledge for Estimated Time of Arrival Prediction. 25th IEEE International Conference on Intelligent Transportation Systems 2022 (accepted)
- Tran, Hieu, Son Nguyen, I. Yen, and Farokh Bastani. "IoT Data Discovery: Routing Table and Summarization Techniques.". IEEE Transactions on Cloud Computing. (to be submitted)

- [statista, 2021] statista, "Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2030," 8.25.2021. [Online]. Available: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/.
- [statista, 2022] Data volume of internet of things (IoT) connections worldwide in 2019 and 2025. [Online]. Available: https://www.statista.com/statistics/1017863/worldwide-iot-connected-devices-data-size/
- [S. Sivanthan, et al. 2008] S. Sivanthan and et al., "Efficient multiple-keyword search in DHT-based decentralized systems," IEEE International Symposium on Performance Evaluation of Computer and Telecommunication Systems, 2008
- [G.-E. Luis, 2004] G.-E. Luis, "Data Indexing in Peer-to-Peer DHT Networks," in IEEE 24th International Conference on Distributed Computing Systems, 2004.
- [S. Cristina, et al., 2004] S. Cristina and M. Parashar, "Enabling flexible queries with guarantees in P2P systems," in IEEE Internet Computing, 2004.
- [J.Xing, et al., 2006] J. Xing, Y.Y.P.K and C.S.H.G, "Supporting multiple-keyword search in a hybrid structured peer-to-peer network," in IEEE International Conference on Communications, 2006.
- [T. Koponen, et al., 2007] T. Koponen and et al., "A data-oriented (and beyond) network architecture," in ACM SIGCOMM Computer Communication Review 37.4, 2007
- [ccn project] "Content Centric Networking project," [Online]. Available: http://www.ccnx.org/.
- [V. Jacobson, et al., 2009] V. Jacobson and et al., "Networking named content," in the 5th international conference on Emerging networking experiments and technologies, 2009.
- [Z. Lixia, et al., 2010] Z. Lixia and et al., "Named data networking (ndn) project.," Relatório Técnico NDN-0001, Xerox Palo Alto Research Center- PARC 157, 2010.
- [D. Chakraborty, et al., 2002] D. Chakraborty and et al., "GSD: A novel group-based service discovery protocol for MANETS," in 4th International workshop on mobile and wireless communications network. IEEE, 2002.

- [Adriane Chapman, et al., 2020] Chapman, Adriane, et al. "Dataset search: a survey." The VLDB Journal 29.1 (2020): 251-272.
- [gminsights , 2022] "Vehicle tracking device market," [Online]. Available: gminsights.com/industry-analysis/vehicle-tracking-market.
- [S. Maiti, et al., 2014] S. Maiti and et al., "Historical data based real time prediction of vehicle arrival time," in IEEE ITSC, 2014.
- [H. Wang , et al., 2019] H. Wang and et al., "A simple baseline for travel time estimation using large-scale trip data," in ACM TIST, 2019.
- [Z. Wang, et al., 2018] Z. Wang and et al., "Learning to estimate the travel time," in 24th ACM SIGKDD, 2018.
- [W.-C. Lee, et al., 2012]W.-C. Lee and et al., "HTTP: a new framework for bus travel time prediction based on historical trajectories," in ACM SIGSPATIAL, 2012.
- [Y. Wang, et al., 2014] Y. Wang, Y. Zheng and Y. Xue, "Travel time estimation of a path using sparse trajectories," in ACM SIGKDD, 2014.
- [K.Fu, et al., 2020] K. Fu and et al., "Compacteta: A fast inference system for travel time prediction," in ACM SIGKDD, 2020.
- [E. Jenelius, et al., 2013] E. Jenelius and H. Koutsopoulos, "Travel time estimation for urban road networks using low frequency probe vehicle data," in Transportation Research Part B: Methodological, 2013.
- [A. Hofleitner, et al., 2012] A. Hofleitner and et al., "Learning the dynamics of arterial traffic from probe data using a dynamic Bayesian network," in Transactions on Intelligent Transportation Systems, 2012.
- [F. Zhang, et al., 2016]F. Zhang and et al., "Urban link travel time prediction based on a gradient boosting method considering spatiotemporal correlations," in ISPRS international journal of geo-information, 2016.
- [Y. Sun, et al., 2021] Y. Sun and et al., "Road network metric learning for estimated time of arrival," in ICPR, 2021.
- [T. Mallick, et al., 2021] T. Mallick and et al., "Transfer learning with graph neural networks for short-term highway traffic forecasting," in ICPR, 2021.
- [J. Wang, et al., 2016] J. Wang and et al., "Traffic speed prediction and congestion source exploration: A deep learning method," in IEEE ICDM, 2016.

- [C. Zhang, et al., 2019] C. Zhang and et al., "Deep transfer learning for intelligent cellular traffic prediction based on cross-domain big data," in J-SAC, 2019.
- [P. Krishnakumari, et al., 2018] P. Krishnakumari and et al., "Understanding network traffic states using transfer learning," in ITSC, 2018.
- [B. Y. Lin, et al., 2018] B. Y. Lin and et al., "Transfer learning for traffic speed prediction: A preliminary study.," AAAI Workshops, 2018.
- [Y. Shen, et al., 2020] Y. Shen and et al., "TTPNet: A neural network for travel time prediction based on tensor decomposition and graph embedding," in IEEE Transactions on Knowledge and Data Engineering, 2020.
- [H. Zhang, et al., 2018] H. Zhang and et al., "Deeptravel: a neural network based travel time estimation model with auxiliary supervision," in IJCAI, 2018.
- [S. Wang, et al., 2017] S. Wang and et al., "Computing urban traffic congestions by incorporating sparse GPS probe data and social media data," in ACM Transactions on Information Systems, 2017.
- [B. Du, et al., 2019] B. Du and et al., "Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction," in T-ITS, 2019.
- [Y. Sun, et al., 2020] Y. Sun and et al., "CoDriver ETA: Combine driver information in estimated time of arrival by driving style learning auxiliary task," in IEEE Transactions on Intelligent Transportation Systems, 2020.
- [L. Wang, et al., 2019] L. Wang and et al., "Cross-City transfer learning for deep spatio-temporal prediction," in IJCAI-19, 2019.
- [S. Elmi, et al., 2020] S. Elmi and K.-L. Tan, "Travel time prediction in missing data areas: feature-based transfer learning approach," in IEEE HPCC/SmartCity/DSS, 2020.
- [Y. Huang, et al., 2021] Y. Huang and et al., "Transfer learning in traffic prediction with graph neural networks," in ITSC, 2021.
- [C. Antonio, et al., 2004] C. Antonio, M. J. Rutherford and A. L. Wolf, "A routing scheme for content-based networking," in IEEE INFOCOM, 2004.

- [synopsys,2022] https://www.synopsys.com/designware-ip/technical-bulletin/memory-options.html
- [Marica Amadeo, et al., 2016] Amadeo, Marica, et al. Amadeo, Marica, et al. "Information-centric networking for the internet of things: challenges and opportunities." IEEE Network 30.2 (2016): 92-100.
- [Antonio Carzaniga, et al., 2004] Carzaniga, Antonio, Matthew J. Rutherford, and Alexander L. Wolf. "A routing scheme for content-based networking." IEEE INFOCOM 2004. Vol. 2. IEEE, 2004.
- [Scott Empson, 2020] Route Summarization, Cisco Press., 2020
- [Dipanjan Chakraborty, et al.,2002] Chakraborty, Dipanjan, et al. "GSD: A novel group-based service discovery protocol for MANETS." 4th International workshop on mobile and wireless communications network. IEEE, 2002.

Biographical Sketch

TRUNG HIEU TRAN,

Ph.D. in Software Engineering – The University of Texas at Dallas (UTD)

- in www.linkedin.com/in/trunghieu-tran
- <u>https://scholar.google.com/citations?user=qN7mGjsAAAAJ</u>
- https://trunghieu-tran.github.io

trunghieu.tran@utdallas.edu or trantrunghieu7492@gmail.com

Thank you for your attention Q&A