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Presentation Outline
• Introduction – (Recap)
• Objective – (Recap)
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• IoT Data Discovery – (Recap)
• IoT Data Learning
• Literature Review
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IoT Database Network (IoT-DBN)

• Growing ubiquity of IoT devices (~ 16 Billion devices in 2025)
• Creating a torrent of IoT data

Estimated Growth of the number of IoT 
devices worldwide [statista, 2021]

Data volume of IoT connections worldwide in 
2019 and 2025 (in zettabytes*) [statista,2022] 
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* 1 Zettabytes = 10!" Gigabytes



Police tracks the perpetrator

Ø Can use Google Map, Apple Map, etc.
Ø But estimators are mostly for regular cars, not  

for ambulances
Ø IoT sensors near the incident may capture the 

data that are useful for identifying and tracking 
the perpetrator
Ø E.g., smart car sensors, roadside cameras

Ø Need to discover the relevant data
Ø Need learning methods to do ETA for 

ambulances

Requests the soonest ETA ambulance

Motivating Example

Hit-and-run case



Objective
• Make use of the huge amount of data (from IoT sensors) to help improve the 

daily social operations
• Address existing issues:
• How to discover the useful data for the current situation?
• How to learn from the discovered data to make problem solving decisions?
• How to address to data-sparsity in learning?
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Overview of Our Approach

data

Learning

Task

Data Discovery

decisionData description

Technique: ML
Issues
- Sparse data
- Scarce or no data

No 
data

Based on a data 
annotation model

Efficient & effective 
discovery routing in 
the IoT-DBN
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IoT Database Network

• IoT data are collected in a 
peer-to-peer manner by 
sensors on the  edge of 
the  Internet
• These data are likely 

being stored at the edge 
of the Internet
• Data discovery is to 

discover the relevant 
data streams via their 
descriptions.
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Multi-Attribute Annotation Models (MAA)
• MAA for the metadata of each datasteam
• Has been considered widely for data stream annotation. [G.-E. Luis, 2004] 

• 𝑑𝑠 = 𝑎!: 𝑣!"# , 𝑎$: 𝑣$"# , … , 𝑎%: 𝑣%"#

• 𝑎!: 𝑣!"# : one descriptor with attribute 𝑎! and value 𝑣!"#

• Example:

• Query in MAA
• Subset of attributes
• Example

(DataCategory: 𝐺𝑃𝑆; Vehicle type: 𝑐𝑎𝑟; City:𝐶𝑖𝑛𝑐𝑖𝑛𝑛𝑎𝑡𝑖,
Region: 𝐶𝑒𝑛𝑡𝑟𝑎𝑙 𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠 𝐷𝑖𝑠𝑡𝑟𝑖𝑐𝑡;
Day: 𝑊𝑒𝑒𝑘𝑒𝑛𝑑; Region traffic volume: 𝑣;
Duration: 3/2/18 17:03:20 - 3/2/18 19:10:30)

descriptor

(DataCategory: 𝐺𝑃𝑆; Vehicle type: 𝑎𝑚𝑏𝑢𝑙𝑎𝑛𝑐𝑒 || 𝑐𝑎𝑟; Region traffic volume: [𝑣!, 𝑣"]) 
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Data Discovery Routing in IoT-DBN
• Routing table (RT)

• Each node builds a routing table 
to facilitate data discovery

• Advertisement
• Data source sends out data 

descriptors => Relevant nodes 
add them in their RTs

• A data discovery query
• Forwarded toward where the 

data is at based on RTs
• With the help of RT information

• Like advanced ICN (information 
centric network)
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IoT Data 
Discovery for 
MAA model

DHT-based

Unstructured 
peer-to-peer

Decentralized  
solutions

Centralized 
solutions

Index single 
keyword

Index multiple 
keywords

[S. Sivanthan, et al. 2008]

[G.-E. Luis, 2004]

[S. Cristina, et al., 2004] 

[J.Xing, et al., 2006]
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Query language 
model

Query 
handing

Data 
handling

Result 
representation

Search process via centralized approach [Adriane Chapman, et al., 2020]

Information centric 
networking (ICN) 

DONA [ T. Koponen, et al., 2007]

CCN [V. Jacobson, et al., 2009] 

NDN [Z. Lixia, et al., 2010]

Others

GSD

Our approach

[D. Chakraborty, et al., 2002]

[C. Antonio, et al., 2004] 

[H. Tran, et al., 2021] 

Overview of Existing Works for Data Discovery
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DONA [ T. Koponen, et al., 2007]

CCN [V. Jacobson, et al., 2009] 

NDN [Z. Lixia, et al., 2010]

Others

GSD

Our approach

[D. Chakraborty, et al., 2002]

[C. Antonio, et al., 2004] 

[H. Tran, et al., 2021] 

• Require more resources
• Lower levels of location-based adaptability. 
• Risk of loss and delay
Ø We want to focus on p2p with limited resources

• Potential space overhead for RT
• Naming scheme is not suitable for 

MMA

• Space overhead: duplicate storage
• Communication cost: updates and 

query routing

• Introduce “coverage” as a form of 
summarization

• Be applied to numerical ranges

• Use DAML+OIL to build ontology, but manually
• Can not handle the new keyword data
• Scalability issue

Overview of Existing Works for Data Discovery
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CCN [V. Jacobson, et al., 2009] 

NDN [Z. Lixia, et al., 2010]

Others

GSD

Our approach

[D. Chakraborty, et al., 2002]

[C. Antonio, et al., 2004] 

[H. Tran, et al., 2021] 

• Require more resources
• There are lower levels of location-based adaptability. 
• There is a risk of loss
Ø We want to focus on p2p with limited resources

• Potential space overhead for RT
• Naming scheme is not suitable for 

MMA

• Space overhead: duplicate storage
• Communication cost: updates and 

query routing

• Introduce “coverage” as a form of 
summarization

• Be applied to numerical ranges

• Use DAML+OIL to build ontology, but manually
• Can not handle the new keyword data
• Scalability issue

Overview of Existing Works for Data Discovery

• Centralized solutions used popularly 
Ø We focus on p2p network with limited resource

• Decentralized solutions:
Ø Space overhead issue
ØCommunication cost
Ø Lack of routing table compression for MAA model



Our Proposed Summarization Techniques
Goal: to address the space concerns in the resource-constrained network
• Alphabetical based policy  (𝑆𝑃789:)

• Hash based policy (𝑆𝑃:7#:)
• Meaning based policy (𝑆𝑃;<7%=%>)
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Our Proposed Summarization Techniques
𝑺𝑷𝒂𝒍𝒑𝒉
• Most similar to IP summarization
• Example
• Monitor:engine
• Monitor:engine-speed
• …
• ⇒ In RTs: Only maintain monitor:engine
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Our Proposed Summarization Techniques
𝑺𝑷𝒉𝒂𝒔𝒉
• Address the space overhead in 𝑆𝑃;<=>
• Hash the keywords and use the hash values as the code
• Naturally summarizes by controlling the hash code length

16
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Our Proposed Summarization Techniques
• IoT data streams from a 

specific system, or a specific 

environment may have 

attributed keywords that are 

semantically similar
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𝑆𝑃!"#$%$&

2. Clustering with 𝑘 = 2# = 4

k-Means 
clustering
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1. 𝑊𝑜𝑟𝑑2𝑉𝑒𝑐 𝑘𝑒𝑦𝑤𝑜𝑟𝑑𝑠 into embedded space
3. Assigned code based on the 

cluster hierarchy



𝑆𝑃!"#$%$&
• Monitor sensors = {crank−pos; 𝐶𝑂; engine−speed;MAP;thro_le−po𝑠; 𝑂$;

engine−temperature; air−fuel; oxygen;GPS;carbon−footprint; … }
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When to summarize
(𝑣!, 𝑣$, 𝑣L, 𝑣M) – keyword set, corresponding to:
(10000, 10001,10010,10011)- Full sibling code set (FSCS)
• If a RT has 4 codes in FSCS, they will be summarized into 101
• If it has only 3 codes, what happens if we still summarize?=> misleading
⇒ Need to know the FSCS before summarizing

100

1001110000 10001 10010

𝑣! 𝑣" 𝑣$ 𝑣%
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When to summarize
• How to get FSCS size? 

• Average FSCS Size Estimation 

• Learn the estimation function from dictionary of Wordnet (155K keywords)

• Derivative from tree configuration 

• FSCS Size Vector

• Maintain the accurate FSCS size from root to current node in sum-tree: Sibling 

count vector (SCV)
100

1001110000 10001 10010

𝑣! 𝑣" 𝑣$ 𝑣%

1

111111 111 111

𝑣! 𝑣" 𝑣$ 𝑣%

SCV
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Routing table design for Summarization Tree
hybrid-TableTrie (hTT)
• Master table
• RT-Trie

Other data structures?
• Binary search tree
• N-ary search tree

22



Routing table design for Summarization Tree
hybrid-TableTrie (hTT)
• Master table

• The master table is a full 
index table 

• Each index the first 𝑏 bits of 
tree code.

• RT-Trie

code=000010 10100
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Routing table design for Summarization Tree
hybrid-TableTrie (hTT)
• Master table
• RT-Trie

• Each node maintains code, 
neighbors, and sibling 
count vector

code=000010 10100
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Handling IoT network growth
Growing rate ~ 11% per year
• new data streams => new codes 

for new descriptors 
• When the number of new 

descriptors increases extensively, 
=> a lot of collisions => 
misleading routings due to 
summarization coding 

⇒ Need to increase code length 
⇒ Need a distributed solution for 
reestablishment Growth of the number of IoT devices worldwide (based on 

prediction) [statista, 2021]
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Handling IoT network growth
Reestablishment process:
1. Supper peer sends a request to 

super-peer leader
2. The leader will trigger the 

reestablishment process and send 
the request to all super-peers 

3. Update config for a larger code
4. All data streams will re-advertise

their descriptors

26

1

2

3
4

Conditions to trigger reestablishment: 
• #new descriptors > threshold
• #unique keyword/ hash size > 

threshold 
• the intra-cluster distance > 

threshold  (STmeaning)



Experimental Study: Compare Data Discovery 
Approaches

• Reduces the RT size by 20 to 30 folds with 2-5% increase in latency

• Outperforms DHT based approaches by 2 to 6 folds in terms of latency, traffic.
27



Overview of Our Approach
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Issues
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Efficient & effective 
discovery routing in 
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Police tracks the perpetrator

Ø Can use Google Map, Apple Map, etc.
Ø But estimators are mostly for regular cars, not  

for ambulances
Ø IoT sensors near the incident may capture the 

data that are useful for identifying and tracking 
the perpetrator
Ø E.g., smart car sensors, roadside cameras

Ø Need to discover the relevant data
Ø Need learning methods to do ETA for 

ambulances

Requests the soonest ETA ambulance

Motivating Example

Hit-and-run case



IoT Data Learning-Recap
Which ambulance to order??? 
Problems to address:
• How to estimate the arrival time of ambulances at different locations efficiently?
• If the desired data is not available or not sufficient for learning:
• Can we use transfer learning to learn the data from other data-rich resource?
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Overview of ETA solution

ETA approach

End-to-End estimation

Fine-grained estimation

Segment estimation
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Overview of ETA solution

ETA approach

End-to-End estimation

Fine-grained estimation

Segment estimation

[S. Maiti, et al., 2014]

[H. Wang ,et al.,2019]

[Z. Wang, et al.,2018] 

[W.-C. Lee, et al., 2012]Calculate the average travel 
time from a source to a 
destination based on 
historical GPS trajectory data

Low accuracy

32

average travel time 



Overview of ETA solution

ETA approach

End-to-End estimation

Fine-grained estimation

Segment estimation

Partition a trajectory into 
several segments and obtain 
different representations for 
each segment by some 
embedding methods for 
various learning models 

[Y. Wang, et al., 2014] 

[K.Fu, et al., 2020]

[E. Jenelius, et al., 2013]

[F. Zhang, et al.,2016]

[Y. Sun, et al.,2021]

Improve accuracy, but bad performance for long road segment
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Overview of ETA solution

ETA approach

End-to-End estimation

Fine-grained estimation

Segment estimation
Focus on a fine-grained data-
driven approach that constructs 
models to learn spatial-temporal 
knowledge from small regions of 
the map where the route passes 
through

[B. Y. Lin, et al.,2018]

[H. Zhang, et al.,2018]

[C. Zhang, et al., 2019]

[Y. Shen, et al.,2020]

Only consider the impact of individual environmental 
factors without considering the integrated impact. 34



ETA approach

End-to-End estimation

Fine-grained estimation

Segment estimation

[B. Y. Lin, et al.,2018]
[H. Zhang, et al.,2018]
[C. Zhang, et al., 2019]
[Y. Shen, et al.,2020]

35

[S. Maiti, et al., 2014]

[H. Wang ,et al.,2019]

[Z. Wang, et al.,2018] 

[W.-C. Lee, et al., 2012]

average travel time 

[Y. Wang, et al., 2014] 

[K.Fu, et al., 2020]

[E. Jenelius, et al., 2013]

[F. Zhang, et al.,2016]

[Y. Sun, et al.,2021]

Overview of ETA solution

2012

2021

2016

2013

2014

2018

2017

2019

2020

2015

[H. Tran, et al., 2022]

2022

Evolution



Different Driving Time Among Vehicle Types

15m

18m

45m

25m

10m

• In the same trajectory, different type of vehicles lead to different driving time
• But none of the existing approach considers this issue
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Challenges
• Using one ETA prediction model for all vehicles

⇒ Low prediction accuracy 

• Building models for each specific vehicle type (not each vehicle)
⇒ Potential data scarceness problem
⇒ Data for some special vehicles may not even be available

GPS data 2018 in France 
[gminsights , 2021]

Light commerical vehicle Heavy vehicle

GPS data 2018 in Brazil
[gminsights , 2021]

Regular vehicle Service vehicle

GPS data 2018 in Cincinnati 
[cincinnati-oh.gov , 2021]

Regular vehicle Service vehicle
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TLETA-Deep Transfer Learning and Integrated Cellular Knowledge 
for Estimated Time of Arrival Prediction
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TLETA-Deep Transfer Learning and Integrated Cellular Knowledge 
for Estimated Time of Arrival Prediction

• The cellular spatial-temporal 
knowledge: domain-specific and cross-
domain knowledge 

• The cellular learning module learns the 
cellular traffic patterns and includes a 
classifier, a road network structure 
embedding scheme, and a cellular ETA 
algorithm. 

• The task-oriented prediction module 
leverages the learned model to predict 
ETA of a given trajectory 

TLETA: Deep Transfer Learning and Integrated Cellular Data for 
Estimated Time of Arrival Prediction Architecture
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TLETA-Cellular spatial-temporal knowledge
Cellular spatial-temporal knowledge

• Partition a city into grid cells 

40



TLETA-Cellular spatial-temporal knowledge
Cellular spatial-temporal knowledge

• Partition a city into grid cells 

• Construct spatial-temporal knowledge (3D)
• For each cell

GPS trajectory

Road network structure

ETA model

Weather

Events

Static
Date

Social 
events

Traffic 
events
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TLETA-Cellular spatial-temporal knowledge
Cellular spatial-temporal knowledge

• Partition a city into grid cells 

• Construct spatial-temporal knowledge (3D)
• For each cell

42

GPS trajectory

Road network structure

ETA model

Weather

Events

Static

Date

Social events Traffic events

Domain knowledge

Cross-domain knowledge 



TLETA-Cellular spatial-temporal knowledge
Cellular spatial-temporal knowledge

• Partition a city into grid cells 

• Construct spatial-temporal knowledge (3D)
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GPS trajectory

Road network structure

ETA model

Weather

Events

Static
Date

Social 
events

Traffic 
events

TLETA-Cellular spatial-temporal knowledge
Cellular spatial-temporal knowledge

• Partition a city into grid cells 

• Construct spatial-temporal knowledge (3D)
• For each cell

Issue: data sparsity due to fine-grained knowledge
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Handling Data Sparseness in ETA

[S. Wang,et al.,2017]

[B. Du, et al., 2019]

[Y. Sun, et al.,2020]

Handling 
Data data 
sparsity in 

ETA

Irregular convolution

Collaborative filtering 

Training intensity 
modification

• Computationally expensive
for spatial-temporal 
knowledge
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Handling Data Sparseness in ETA

[S. Wang,et al.,2017]

[B. Du, et al., 2019]

[Y. Sun, et al.,2020]

Handling 
Data data 
sparsity in 

ETA

Irregular convolution

Collaborative filtering 

Training intensity 
modification

• Increase the training intensity of data-
sparse cells under the guidance of 
data-rich cells

• Computationally expensive for spatial-
temporal knowledge as needed to 
address from which cells for guidance
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Handling Data Sparseness in ETA

[S. Wang,et al.,2017]

[B. Du, et al., 2019]

[Y. Sun, et al.,2020]

Handling 
Data data 
sparsity in 

ETA

Irregular convolution

Collaborative filtering 

Training intensity 
modification Regular kernel in CNN Irregular kernel (proposed)

• If the nearest neighbor cells are too 
far, cells may have different traffic 
properties

47



Inner-domain data interpolation learning

Handling sparse GPS knowledge 

on
e−
la
ye
r

⊕

Cellular Long term
memory knowledge

𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙=(2ℎ, 3ℎ, 6ℎ, … )

Cellular Short term
memory knowledge

𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙=(1ℎ, 30𝑚, 15𝑚,… )
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TLETA- Cellular Learning Model
• Classify cellular grids into 𝒩 different 

categories of traffic levels based on driving 
pattern (average speed and other cellular 
knowledge) via neural network classification

𝐽&'(,*+! 𝐽&'(,*+" 𝐽&'(,*+,
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TLETA- Cellular Learning Model

𝐽&'(,*+! 𝐽&'(,*+" 𝐽&'(,*+,

50

• Classify cellular grids into 𝒩 different 
categories of traffic levels based on driving 
pattern (average speed and other cellular 
knowledge) via neural network classification

10%

21%

28%

20%

…

…

…

𝒩 categories



TLETA-SDNE
• Convert each GPS trajectory to list of cells to 

build road network
• Construct embedding road network via first-

order proximity

Embedding road network for each cell

51

One trajectory Multiple 
trajectories



TLETA-SDNE

Global road network 
structure preserved

Local road network structure preserved

cell (ℎ# , 𝑤#) cell (ℎ$ , 𝑤$)

52

One trajectory Multiple 
trajectories

SNDE for each cell in spatial-temporal knowledge

• Semi-supervised deep model for structural deep network 
embedding (SDNE) learn the embedding knowledge.

Ø Obtain the embedding vector for each cell that preserves 
the local and global structure of the road network.



TLETA-Cellular driving time estimation model

TLETA: Deep Transfer Learning and Integrated Cellular Data 
for Estimated Time of Arrival Prediction Architecture

Top-k class 

Road structure 
embedding

ℐ-.,-

NN Cellular driving 
time estimation

53

other 
cellular 
knowledge



TLETA-Task-oriented Algorithm
Task-oriented algorithm
• Given GPS trajectory
• Using the cellular learning output for 

cellular ETA
• Update ETA in real-time

TLETA: Deep Transfer Learning and Integrated Cellular Data 
for Estimated Time of Arrival Prediction Architecture

Algorithm 1: Task-oriented algorithm
Input: Source 𝑠𝑟𝑐 and destination 𝑑𝑒𝑠 location, GPS 
trajectory 𝑔𝑝𝑠, timestamp 𝑡.
Output: Driving time estimation

1: begin
2: 𝑐𝑢𝑟𝑟 = 𝑠𝑟𝑐 ; ℂ = convertGPStoCells(𝑔𝑝𝑠)
3: while not reachDestination(𝑐𝑢𝑟𝑟, 𝑑𝑒𝑠)
4: 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒 = collectKnowledge(𝑡, 𝑐𝑢𝑟𝑟)
5. 𝑐𝑒𝑙𝑙_𝑡 = getDrivingTime(ℂ , 𝑐𝑢𝑟𝑟, 𝑡, 𝑘𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒)
6. 𝑐𝑢𝑟𝑟 = nextCell(ℂ, 𝑐𝑢𝑟𝑟)
7: updateResult(𝑟𝑒𝑠𝑢𝑙𝑡, 𝑐𝑒𝑙𝑙_𝑡)
8: updateFutureTime(𝑡, 𝑐𝑒𝑙𝑙_𝑡)
9:end while
10:end

A crash will affect the ETA in real-time

ETA=9:30am 9:31am 9:31am

9:50am9:49am9:48am 54



TLETA-Transferable Layers
Transfer Learning among vehicle 

domains
• Transferable hidden layers – fixed 

while training target domain
• Only train SoftMax layer and 

Domain customized layers in target 
domain

TLETA: Deep Transfer Learning and Integrated Cellular Data 
for Estimated Time of Arrival Prediction Architecture

55



TLETA-Transferable Layers
Transfer Learning among vehicle 

domains
• Transferable hidden layers – fixed 

while training target domain
• Only train SoftMax layer and 

Domain customized layers in target 
domain

TLETA: Deep Transfer Learning and Integrated Cellular Data 
for Estimated Time of Arrival Prediction Architecture

56

Reduce training time significantly



Summary of TLETA
• The cellular spatial-temporal 

knowledge: domain-specific 
and cross-domain knowledge 

• The cellular learning module 
learns the cellular traffic 
patterns and includes a 
classifier, a road network 
structure embedding scheme, 
and a cellular ETA algorithm. 

• The task-oriented prediction 
module leverages the learned 
model to predict ETA of a 
given trajectory 

TLETA: Deep Transfer Learning and Integrated Cellular Data for Estimated Time of Arrival 
Prediction Architecture 57



Unavailable data for target domain

58

Region 1 Region 2

Regular vehicle 
data

Service vehicle 
data

Regular vehicle 
data

Service vehicle 
data

ETA for service 
vehicleTLETA

TLETA



Unavailable data for target domain

59

Region 1 Region 2

Region 3

Regular vehicle 
data

Service vehicle 
data

Regular vehicle 
data

Service vehicle 
data

Regular vehicle 
data

ETA for service 
vehicleTLETA

TLETA

TLETA

How to predict ETA when 
there is no historical data 
for target domain?



In-region mapping function learning for each region

60

In-region mapping function learning in region reg

Learned from 
TLETA

Goal: To learn the 
relation between 
vehicle domain models 
in regions where data is 
available



Inter-region transfer learning
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Inter-region transfer learning

Goal: To leverage the 
relation between vehicle 
domain models from 
other regions to predict 
a target domain model 
in a region where the 
data is unavailable

output of source domain

output of target domain



Region spatial-temporal similarity
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Spatial-temporal 
speed knowledge

Region 1: 𝐽!

Spatial-temporal 
speed knowledge

Region 2: 𝐽"

Similarity = 2D cross-
correlation matrix

• two-dimensional cross-correlation 
matrix MC = 𝐽! × 5𝐽$ (where 5𝐽$ -
complex conjugation)

• Mean(MC) – denote the similarity 
level

• higher Mean(MC) presents a 
higher similarity

𝐽!

Q𝐽"

MC
𝐽!

Q𝐽"



Different ETA Approach Comparison
Approach Category

Consider Impact Factors Handle data sparsity Consider 
different 

vehicle typesGPS Weather Event POI Time Local road 
network structure

Global road 
network structure

Sparse TL Unavailable

[W.-C. Lee, et al., 2012] Segment x
[S. Maiti, et al., 2014] End-to-End x
[Z. Wang, et al.,2018] End-to-End x
[H. Wang ,et al.,2019] End-to-End x x

[A. Hofleitner, et al., 2012] Segment x x x
[E. Jenelius, et al., 2013] Segment x x x x

[Y. Wang, et al., 2014] Segment x x x
[F. Zhang, et al.,2016] Segment x x x

[K.Fu, et al., 2020] Segment x x x x x
[Y. Sun, et al.,2021] Segment x x x

[B. Y. Lin, et al.,2018] Segment x x x x x
[P. Krishnakumari, et al.,2018] Fine-grained x x x x

[H. Zhang, et al.,2018] Fine-grained x
[C. Zhang, et al., 2019] Fine-grained x x x x x x
[Y. Shen, et al.,2020] Fine-grained x x x x
[S. Wang,et al.,2017] Segment x x x x x x x
[Y. Sun, et al.,2020] Segment x x x
[B. Du, et al., 2019] Fine-grained x x x x

[L. Wang, et al., 2019] Fine-grained x x x x x
[S. Elmi , et al., 2020] Segment x x x x x x

[Y. Huang, et al., 2021] Segment x x x x
[T. Mallick, et al.,2021] Segment x x x x
[J. Wang, et al., 2016] Segment x x x x x

TLETA Fine-grained x x x x x x x x x x x
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Experimental studies of parameter analysis for TLETA 
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MAPE - Mean absolute 
percentage error



Experimental studies of parameter analysis for TLETA 
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MAPE - Mean absolute 
percentage error

• TL reduces 50% MAPE compared to non-TL
• TL Converges x2 times faster than non-TLs
• [256-512] transferable units can give the 

best trade-offs



Experimental studies for Inter-region transfer 
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Experimental studies for Inter-region transfer 
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Inter-region transfer is only around 1.5% higher MAPE 
than TL with target-data



Experimental studies for ETA prediction

Approach
Knowledge Metrics

G S W E R MAPE RMSE
[Y. Shen, et al.,2020] x x 19.57% 76s
[B. Du, et al., 2019] x x x 18.44% 74s
[K.Fu, et al., 2020] x x x 17.92% 71s

[H. Wang ,et al.,2019] x 25.32% 102s

Reduced knowledge 
categories

x 23.78% 86s
x x 19.64% 72s
x x 21.44% 81s
x x 20.85% 80s
x x 18.23% 70s
x x x 18.20% 70s
x x x 16.88% 66s
x x x x 14.35% 58s
x x x x 13.66% 53s
x x x x 14.02% 56s
x x x x 15.71% 62s
x x x x x 12.37% 36s

68

G – GPS knowledge
S – Static
W – Weather
E – Event
R – Road Network 
Structure

MAPE - Mean absolute 
percentage error
RMSE - Root Mean Square Error



Experimental studies for ETA prediction

Approach
Knowledge Metrics

G S W E R MAPE RMSE
[Y. Shen, et al.,2020] x x 19.57% 76s
[B. Du, et al., 2019] x x x 18.44% 74s
[K.Fu, et al., 2020] x x x 17.92% 71s

[H. Wang ,et al.,2019] x 25.32% 102s

Reduced knowledge 
categories

x 23.78% 86s
x x 19.64% 72s
x x 21.44% 81s
x x 20.85% 80s
x x 18.23% 70s
x x x 18.20% 70s
x x x 16.88% 66s
x x x x 14.35% 58s
x x x x 13.66% 53s
x x x x 14.02% 56s
x x x x 15.71% 62s
x x x x x 12.37% 36s

69

G – GPS knowledge
S – Static
W – Weather
E – Event
R – Road Network 
Structure

MAPE - Mean absolute 
percentage error
RMSE - Root Mean Square Error

Improved at least 1.3% (MAPE) and 

6% (RMSE) with the same 
configuration for ETA prediction



Experimental studies for TL performance

Dataset Urban Suburban

Approach MAPE RMSE Time MAPE RMSE Time

STCNet [C. Zhang, et al., 
2019]

17.65% 62s 104m 18.01% 76s 91m

RegionTrans [L. Wang, et al., 
2019]

16.23% 56s 110m 17.88% 67s 93m

TL-DCRNN [T. Mallick, et 
al.,2021]

16.98% 57s 72m 17.21% 65s 56m

Lin et al. [B. Y. Lin, et al.,2018] 22.58% 73s 53m 24.32% 97s 45m

FBTL [S. Elmi , et al., 2020] 23.29% 81s 122m 25.78% 105s 99m

TEEPEE[Y. Huang, et al., 2021] 20.96% 70s 88m 22.43% 85s 72m

Non-transfer 14.78% 55s 49m 18.51% 74s 39m

TLETA 10.54% 34s 31m 11.81% 38s 29m

Properties
Dataset

Urban Suburban
#GPS points for regular 

vehicles
1.2M 1M

#GPS points for service 
vehicles

1M 175K

POI 16K 8K

Splitting factor ε° 0.001° 0.001°

Cincinnati datasets in 2018
information statistics

Transfer learning performance comparison of TLETA 
and other traffic forecasting methods
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Experimental studies for TL performance

Dataset Urban Suburban

Approach MAPE RMSE Time MAPE RMSE Time

STCNet [C. Zhang, et al., 
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16.23% 56s 110m 17.88% 67s 93m

TL-DCRNN [T. Mallick, et 
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16.98% 57s 72m 17.21% 65s 56m

Lin et al. [B. Y. Lin, et al.,2018] 22.58% 73s 53m 24.32% 97s 45m

FBTL [S. Elmi , et al., 2020] 23.29% 81s 122m 25.78% 105s 99m

TEEPEE[Y. Huang, et al., 2021] 20.96% 70s 88m 22.43% 85s 72m

Non-transfer 14.78% 55s 49m 18.51% 74s 39m

TLETA 10.54% 34s 31m 11.81% 38s 29m

Properties
Dataset

Urban Suburban
#GPS points for regular 

vehicles
1.2M 1M

#GPS points for service 
vehicles

1M 175K

POI 16K 8K

Splitting factor ε° 0.001° 0.001°

Cincinnati datasets in 2018
information statistics

Transfer learning performance comparison of TLETA 
and other traffic forecasting methods
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Improved at least 35% (MAPE) and 

39% (RMSE) and 41% (training time) 
compared to the state-of-the-art 
approaches



Summary

data

Learning

Task

Data Discovery

decisionData description

Technique: ML
Issues
- Sparse data
- Scarce or no data

No 
data

Based on a data 
annotation model

Efficient & effective 
discovery routing in 
the IoT-DBN
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Future Research
• Considering provenance-based data discovery 
• Focus on adapting the applications of our learning techniques to address 

different questions in ITS and other applicable areas.
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Selected Publications
• Tran, Hieu, Son Nguyen, I-Ling Yen, and Farokh Bastani. "Into Summarization 

Techniques for IoT Data Discovery Routing." 2021 IEEE 14th International 
Conference on Cloud Computing (CLOUD). IEEE, 2021.
• Tran, Hieu, Son Nguyen, I. Yen, and Farokh Bastani. "IoT Data Discovery: Routing 

Table and Summarization Techniques." arXiv preprint arXiv:2203.10791 (2022).
• Tran, Hieu, Son Nguyen, I. Yen, and Farokh Bastani. TLETA: Deep Transfer Learning 

and Integrated Cellular Knowledge for Estimated Time of Arrival Prediction. 25th 
IEEE International Conference on Intelligent Transportation Systems 2022 
(accepted)
• Tran, Hieu, Son Nguyen, I. Yen, and Farokh Bastani. "IoT Data Discovery: Routing 

Table and Summarization Techniques.". IEEE Transactions on Cloud Computing. 
(to be submitted)
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